Telegram Group & Telegram Channel
Всем привет! На канале Data analysis | Анализ данных | DA разбираются темы и вопросы, которые должен знать аналитик данных, имеющий опыт 3-6 лет. Все темы взяты из реальных вакансий, опубликованных на hh.ru.

Будет полезно, если вы являетесь аналитиком данных (начинающим или опытным) или работаете по смежной профессии, либо просто интересуетесь базами данных, Python, SQL, экономикой и финансами и всеми производными от этих тем.

🟠Список разобранных вопросов:

Python:

▶️Эмбеддинги предложений
▶️Алгоритм кластеризации
▶️Кластеризация текстовой информации
▶️Визуализация: Matplotlib
▶️Визуализация: Seaborn
▶️Python в Tableau
▶️Python + SQL: Cx_oracle
▶️Большие данные в Python: Dask
▶️Массовая загрузка файлов в БД

SQL:

▶️PARTITION (оконные функции)
▶️PARTITION (партиционирование)
▶️Процедуры: разбор IN | OUT | IN OUT
▶️Процедуры: объявления и исключения
▶️PACKAGE (пакеты)
▶️Циклы LOOP, WHILE, FOR
▶️CURSOR
▶️Индексы
▶️Представления (Views)
▶️Материализованные и нематериализованные views
▶️Pivot в SQL
▶️Hints (хинты)
▶️EXPLAIN PLAN
▶️TRIGGER (триггеры)

Базы данных:

▶️Какие бывают базы данных
▶️Виды БД наглядно
▶️ACID и BASE
▶️Типы данных
▶️OLAP-кубы
▶️Проектирование баз данных
▶️Разница между БД и DWH
▶️Витрины данных
▶️ETL и ELT процессы
▶️Звездочка, снежинка, Data Vault
▶️Слои данных в DWH
▶️Нормализация

Инструменты:

▶️
Обзор Hadoop
▶️Обзор Hive
▶️Обзор Impala
▶️Обзор Airflow
▶️Обзор ClickHouse
▶️Массивы, groupArray, groupUniqArray, uniq
▶️arraySort, arrayReverseSort и arrayFilter
▶️Tableau
▶️Arenadata Catalog
▶️Qlik Sense
▶️Informatica PowerCenter

А/Б тестирование:

▶️Основы А/Б тестов
▶️А/Б тесты на практике
▶️Математические методы проверки результатов
▶️Инструменты А/Б тестирования

Работа с данными:

▶️Парадокс Симпсона
▶️Банковские клиенты
▶️Клиентская информация в банковском DWH
▶️Банковские продукты
▶️Продуктовая информация в банковском DWH
▶️Счета, баланс и фин рез в банковском DWH
▶️Качество данных
▶️Метаданные
▶️Source-to-Target Mapping

🟠В ближайшем будущем будем разбирать:

▶️Больше про SQL и базы данных: архитектуру и т.п.
▶️Больше питоновских библиотек и кейсов
▶️Про банковские данные
▶️Актуальные инструменты, в частности BI-инструменты и ETL-инструменты



tg-me.com/pythonbooksru/817
Create:
Last Update:

Всем привет! На канале Data analysis | Анализ данных | DA разбираются темы и вопросы, которые должен знать аналитик данных, имеющий опыт 3-6 лет. Все темы взяты из реальных вакансий, опубликованных на hh.ru.

Будет полезно, если вы являетесь аналитиком данных (начинающим или опытным) или работаете по смежной профессии, либо просто интересуетесь базами данных, Python, SQL, экономикой и финансами и всеми производными от этих тем.

🟠Список разобранных вопросов:

Python:

▶️Эмбеддинги предложений
▶️Алгоритм кластеризации
▶️Кластеризация текстовой информации
▶️Визуализация: Matplotlib
▶️Визуализация: Seaborn
▶️Python в Tableau
▶️Python + SQL: Cx_oracle
▶️Большие данные в Python: Dask
▶️Массовая загрузка файлов в БД

SQL:

▶️PARTITION (оконные функции)
▶️PARTITION (партиционирование)
▶️Процедуры: разбор IN | OUT | IN OUT
▶️Процедуры: объявления и исключения
▶️PACKAGE (пакеты)
▶️Циклы LOOP, WHILE, FOR
▶️CURSOR
▶️Индексы
▶️Представления (Views)
▶️Материализованные и нематериализованные views
▶️Pivot в SQL
▶️Hints (хинты)
▶️EXPLAIN PLAN
▶️TRIGGER (триггеры)

Базы данных:

▶️Какие бывают базы данных
▶️Виды БД наглядно
▶️ACID и BASE
▶️Типы данных
▶️OLAP-кубы
▶️Проектирование баз данных
▶️Разница между БД и DWH
▶️Витрины данных
▶️ETL и ELT процессы
▶️Звездочка, снежинка, Data Vault
▶️Слои данных в DWH
▶️Нормализация

Инструменты:

▶️
Обзор Hadoop
▶️Обзор Hive
▶️Обзор Impala
▶️Обзор Airflow
▶️Обзор ClickHouse
▶️Массивы, groupArray, groupUniqArray, uniq
▶️arraySort, arrayReverseSort и arrayFilter
▶️Tableau
▶️Arenadata Catalog
▶️Qlik Sense
▶️Informatica PowerCenter

А/Б тестирование:

▶️Основы А/Б тестов
▶️А/Б тесты на практике
▶️Математические методы проверки результатов
▶️Инструменты А/Б тестирования

Работа с данными:

▶️Парадокс Симпсона
▶️Банковские клиенты
▶️Клиентская информация в банковском DWH
▶️Банковские продукты
▶️Продуктовая информация в банковском DWH
▶️Счета, баланс и фин рез в банковском DWH
▶️Качество данных
▶️Метаданные
▶️Source-to-Target Mapping

🟠В ближайшем будущем будем разбирать:

▶️Больше про SQL и базы данных: архитектуру и т.п.
▶️Больше питоновских библиотек и кейсов
▶️Про банковские данные
▶️Актуальные инструменты, в частности BI-инструменты и ETL-инструменты

BY Python книги на русском




Share with your friend now:
tg-me.com/pythonbooksru/817

View MORE
Open in Telegram


Python книги на русском Telegram | DID YOU KNOW?

Date: |

How Does Bitcoin Mining Work?

Bitcoin mining is the process of adding new transactions to the Bitcoin blockchain. It’s a tough job. People who choose to mine Bitcoin use a process called proof of work, deploying computers in a race to solve mathematical puzzles that verify transactions.To entice miners to keep racing to solve the puzzles and support the overall system, the Bitcoin code rewards miners with new Bitcoins. “This is how new coins are created” and new transactions are added to the blockchain, says Okoro.

Telegram Auto-Delete Messages in Any Chat

Some messages aren’t supposed to last forever. There are some Telegram groups and conversations where it’s best if messages are automatically deleted in a day or a week. Here’s how to auto-delete messages in any Telegram chat. You can enable the auto-delete feature on a per-chat basis. It works for both one-on-one conversations and group chats. Previously, you needed to use the Secret Chat feature to automatically delete messages after a set time. At the time of writing, you can choose to automatically delete messages after a day or a week. Telegram starts the timer once they are sent, not after they are read. This won’t affect the messages that were sent before enabling the feature.

Python книги на русском from jp


Telegram Python книги на русском
FROM USA